Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions

نویسندگان

  • TATYANA SOROKINA
  • FRANK ZEILFELDER
چکیده

We describe an approximating scheme based on cubic C1 splines on type-6 tetrahedral partitions using data on volumetric grids. The quasi-interpolating piecewise polynomials are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the data values. Hence, each polynomial piece of the approximating spline is immediately available from local portions of the data, without using prescribed derivatives at any point of the domain. The locality of the method and the uniform boundedness of the associated operator provide an error bound, which shows that the approach can be used to approximate and reconstruct trivariate functions. Simultaneously, we show that the derivatives of the quasi-interpolating splines yield nearly optimal approximation order. Numerical tests with up to 17 × 106 data sites show that the method can be used for efficient approximation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local lagrange interpolation with cubic C1 splines on tetrahedral partitions

We describe an algorithm for constructing a Lagrange interpolation pair based onC1 cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ R3, we construct a set P containing V and a spline space S3( ) based on a tetrahedral partition whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are exten...

متن کامل

Local Lagrange Interpolation With Cubic C Splines on Tetrahedral Partitions

We describe an algorithm for constructing a Lagrange interpolation pair based on C cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ IR, we construct a set P containing V and a spline space S 3 (△) based on a tetrahedral partition △ whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are e...

متن کامل

A Local Lagrange Interpolation Method Based on C Cubic Splines on Freudenthal Partitions

A trivariate Lagrange interpolation method based on C1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

A local Lagrange interpolation method based on C1 cubic splines on Freudenthal partitions

A trivariate Lagrange interpolation method based on C cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

A C1 quadratic trivariate macro-element space defined over arbitrary tetrahedral partitions

In 1988, Worsey and Piper constructed a trivariate macro-element based on C1 quadratic splines defined over a split of a tetrahedron into 24 subtetrahedra. However, this local element can only be used to construct a corresponding macro-element spline space over tetrahedral partitions that satisfy some very restrictive geometric constraints. We show that by further refining their split, it is po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006